In this work, the mesoscale mechanics of metals, which links their microscopic physics and macroscopic mechanics, was established. For practical applications, the laws for quantitatively predicting life of cycle and time-dependent fracture behavior such as fatigue, hydrogen embrittlement, and high-temperature creep were derived using particle transport phenomena theories such as dislocation group dynamics, hydrogen diffusion, and vacancy diffusion. Furthermore, these concepts were also applied for estimating the degree of viscoelastic deterioration of blood vessel walls, which is dominated by a time-dependent mechanism, and for the diagnosis of aneurysm accompanied by the viscoelastic deterioration of the blood vessel wall.
View Article and Find Full Text PDFJ Orthop Sci
March 2021
We have developed a non-invasive diagnostic device for treating thoracic aortic aneurysm that can be applied at a peripheral artery. This study aimed to examine how configuration and size of an aneurysm as well as endoluminal pressure affect our diagnostic device's ability to detect an aneurysm, using a pulsatile mock circulation. We created three different-sized (12, 16, and 20 mm) saccular and fusiform aneurysm models using silicone and incorporated them in a pulsatile perfusion circuit to evaluate vertical vessel wall velocity wave form at a location apart from the aneurysm.
View Article and Find Full Text PDF