Publications by authors named "A Tortschanoff"

In this work, we investigated the optimization of a plasmonic slot waveguide (PSWG) in the mid-IR region particularly for a representative wavelength of 4.26 µm, which is the absorption line of CO and thus particularly relevant for applications. We analysed the mode features associated with metal-dielectric-metal (MDM), dielectric-metal-dielectric (DMD), and truncated metal film (TMF) structures with respect to the considered PSWG.

View Article and Find Full Text PDF

In this study, we investigate the potential of one-dimensional plasmonic grating structures to serve as a platform for, e.g., sensitive refractive index sensing.

View Article and Find Full Text PDF

Plasmonic slot waveguides have attracted much attention due to the possibility of high light confinement, although they suffer from relatively high propagation loss originating from the presence of a metal. Although the tightly confined light in a small gap leads to a high confinement factor, which is crucial for sensing applications, the use of plasmonic guiding at the same time results in a low propagation length. Therefore, the consideration of a trade-off between the confinement factor and the propagation length is essential to optimize the waveguide geometries.

View Article and Find Full Text PDF

The design and modeling of a curved shape photonic crystal taper consisting of Si rods integrated with a photonic crystal waveguide are presented. The waveguide is composed of a hexagonal lattice of Si rods and optimized for CO sensing based on absorption spectroscopy. We investigated two different approaches to design a taper for a photonic crystal waveguide in a hexagonal lattice of silicon rods.

View Article and Find Full Text PDF

The detection of infrared radiation is of great interest for a wide range of applications, such as absorption sensing in the infrared spectral range. In this work, we present a CMOS compatible pyroelectric detector which was devised as a mid-infrared detector, comprising aluminium nitride (AlN) as the pyroelectric material and fabricated using semiconductor mass fabrication processes. To ensure thermal decoupling of the detector, the detectors are realized on a SiN/SiO membrane.

View Article and Find Full Text PDF