Wood and bark anatomy and histochemistry of Acacia bilimekii Humb. & Bonpl., Acacia cochliacantha Mcbride, Conzatia nultiflora (Rob) Stand.
View Article and Find Full Text PDFAm J Phys Anthropol
November 2001
Ancient DNA from the bone remains of 25 out of 28 pre-Columbian individuals from the Late Classic-Postclassic Maya site of Xcaret, Quintana Roo, was recovered, and mitochondrial DNA (mtDNA) was amplified by using the polymerase chain reaction. The presence of the four founding Amerindian mtDNA lineages was investigated by restriction analysis and by direct sequencing in selected individuals. The mtDNA lineages A, B, and C were found in this population.
View Article and Find Full Text PDFPrevious observations with type I collagen from a proband with lethal osteogenesis imperfecta demonstrated that type I collagen containing a substitution of cysteine for glycine alpha 1-748 copolymerized with normal type I collagen (Kadler, K. E., Torre-Blanco, A.
View Article and Find Full Text PDFPrevious observations suggested that incubating fibroblasts at elevated temperature caused over-modification of type I procollagen by post-translational enzymes because of a delay in folding of the collagen triple helix. Here, human skin fibroblasts were incubated at 40.5 instead of 37 degrees C, and the type I procollagen secreted into the medium was isolated.
View Article and Find Full Text PDFType I procollagen was purified from cultured fibroblasts of a proband with a lethal variant of osteogenesis imperfecta. The protein was a mixture of normal procollagen and mutated procollagens containing a substitution of cysteine for glycine in either one pro alpha 1(I) chain or both pro alpha 1(I) chains, some or all of which were disulfide-linked through the cysteine at position alpha 1-748. The procollagen was then examined in a system for generating collagen fibrils de novo by cleavage of the pCcollagen to collagen with procollagen C-proteinase [Kadler et al.
View Article and Find Full Text PDF