Publications by authors named "A Toral-Lopez"

Two-dimensional materials, in particular transition metal dichalcogenides (TMDs), have attracted a nascent interest in the implementation of memristive architectures. In addition to being functionally similar to synapses, their nanoscale footprint promises to achieve the high density of a biological neural network in the context of neuromorphic computing. However, in order to advance from the current exploratory phase and reach reliable and sound memristive performances, an understanding of the underlying physical mechanisms in TMD memristors seems imperative.

View Article and Find Full Text PDF

There is evidence of the presence of intercalated water between graphene and the substrate in electronic devices. However, a proper understanding of the impact of this phenomenon, which causes important limitations for the optimization of graphene-based devices operating in aqueous electrolytes, is missing. We used graphene-based electrodes on insulating and conducting substrates to evaluate the impact of intercalated water by combining experimental techniques with numerical simulations.

View Article and Find Full Text PDF

Run-time device-level reconfigurability has the potential to boost the performance and functionality of numerous circuits beyond the limits imposed by the integration density. The key ingredient for the implementation of reconfigurable electronics lies in ambipolarity, which is easily accessible in a substantial number of two-dimensional materials, either by contact engineering or architecture device-level design. In this work, we showcase graphene as an optimal solution to implement high-frequency reconfigurable electronics.

View Article and Find Full Text PDF

Exploiting ambipolar electrical conductivity based on graphene field-effect transistors has raised enormous interest for high-frequency (HF) analog electronics. Controlling the device polarity, by biasing the graphene transistor around the vertex of the V-shaped transfer curve, enables to redesign and highly simplify conventional analog circuits, and simultaneously to seek for multifunctionalities, especially in the HF domain. This study presents new insights for the design of different HF applications such as power amplifiers, mixers, frequency multipliers, phase shifters, and modulators that specifically leverage the inherent ambipolarity of graphene-based transistors.

View Article and Find Full Text PDF

A compact model able to predict the electrical read-out of field-effect biosensors based on two-dimensional (2D) semiconductors is introduced. It comprises the analytical description of the electrostatics including the charge density in the 2D semiconductor, the site-binding modeling of the barrier oxide surface charge, and the Stern layer plus an ion-permeable membrane, all coupled with the carrier transport inside the biosensor and solved by making use of the Donnan potential inside the ion-permeable membrane formed by charged macromolecules. This electrostatics and transport description account for the main surface-related physical and chemical processes that impact the biosensor electrical performance, including the transport along the low-dimensional channel in the diffusive regime, electrolyte screening, and the impact of biological charges.

View Article and Find Full Text PDF