Organic electronic devices offer various advantages, such as low cost and tunability. However, the organic semiconductors used in these devices have significant drawbacks, including instability in air and low carrier mobility. To address these challenges, we recently introduced organic MISM and MISIM (M = metal, I = insulator, S = semiconductor) devices, which effectively generate photo-induced displacement current and exhibit ferroelectric behavior.
View Article and Find Full Text PDFComplement component 5 (C5), an important molecule in the complement cascade, blockade by antibodies shows clinical efficacy in treating complement-mediated disorders. However, insufficient blockading induced by single-nucleotide polymorphisms in the C5 protein or frequent development of "breakthrough" intravascular hemolysis in patients with paroxysmal nocturnal hemoglobinuria treated with eculizumab have been reported. Herein, we developed a lipid nanoparticle (LNP)-formulated siRNA targeting C5 that was efficiently delivered to the liver and silenced C5 expression.
View Article and Find Full Text PDFMolecule-based ferroelectrics has attracted much attention because of its advantages, such as flexibility, light weight, and low environmental load. In the present work, we examined an organic metal|insulator|semiconductor|insulator|metal (MISIM) device structure to stabilize the interfacial polarization in the S layer and to induce polarization hysteresis even without bulk ferroelectrics. The MISIM devices with I = parylene C and S = TMB (=3,3',5,5'-tetramethylbenzidine)-TCNQ (=tetracyanoquinodimethane) exhibited hysteresis loops in the polarization-voltage (-) curves not only at room temperature but also over a wide temperature range down to 80 K.
View Article and Find Full Text PDFEmbryonic vascular development is achieved through the complex arrays of differentiation, proliferation, migration and mutual interaction of different cell types, and visualization as well as purification of unique cell populations are fundamental in studying its detailed mechanisms using in vivo experimental models. We previously demonstrated that Tmem100 was a novel endothelial gene encoding a small transmembrane protein, and that Tmem100 null mice showed embryonic lethality due to severe impairment of vascular formation. In the present study, we generated an EGFP reporter mouse line using a 216 kb genomic region containing mouse Tmem100 gene.
View Article and Find Full Text PDF