Publications by authors named "A Thambyah"

Despite of its assumed role to mitigate brain tissue response under dynamic loading conditions, the human dura mater is frequently neglected in computational and physical human head models. A reason for this is the lack of load-deformation data when the dura mater is loaded dynamically. To date, the biomechanical characterization of the human dura mater predominantly involved quasi-static testing setups.

View Article and Find Full Text PDF

Objective: To explore the ability of polarisation-sensitive optical coherence tomography (PS-OCT) to rapidly identify subtle signs of tissue degeneration in the equine joint.

Method: Polarisation-sensitive optical coherence tomography (PS-OCT) images were systematically acquired in four locations along the medial and lateral condyles of the third metacarpal bone in five dissected equine specimens. Intensity and retardation PS-OCT images, and anomalies observed therein, were then compared and validated with high resolution images of the tissue sections obtained using Differential Interference contrast (DIC) optical light microscopy.

View Article and Find Full Text PDF

The influence of joint degeneration on the biomechanical properties of calcified cartilage and subchondral bone plate at the osteochondral junction is relatively unknown. Common experimental difficulties include accessibility to and visualization of the osteochondral junction, application of mechanical testing at the appropriate length scale, and availability of tissue that provides a consistent range of degenerative changes. This study addresses these challenges.

View Article and Find Full Text PDF

Purpose: The hamstring tendon is the most commonly used autograft material in reconstructive surgeries of anterior cruciate ligament (ACL) tears. Younger patients have worse surgical outcomes, with a higher risk of re-rupture. We hypothesized that age-related changes in hamstring tendon properties affect the tendon's propensity to rupture when used as an autograft in ACL reconstructions.

View Article and Find Full Text PDF

While much has been done to study how cartilage responds to mechanical loading, as well as modelling such responses, arguably less has been accomplished around the mechanics of the cartilage-bone junction. Previously, it has been reported that the presence of bony spicules invading the zone of calcified cartilage, preceded the formation of new subchondral bone and the advancing of the cement line (Thambyah and Broom in Osteoarthr Cartil 17:456-463, 2009). In this study, the morphology and frequency of bone spicules in the cartilage-bone interface of osteochondral beams subjected to three-point bending were modelled, and the results are discussed within the context of biomechanical theories on bone formation.

View Article and Find Full Text PDF