Publications by authors named "A Tersol"

Purpose: Motivated by emerging cone-beam computed tomography (CBCT) systems and scan orbits, we aim to quantitatively assess the completeness of data for 3D image reconstruction-in turn, related to "cone-beam artifacts." Fundamental principles of cone-beam sampling incompleteness are considered with respect to an analytical figure-of-merit [FOM, denoted ] and related to an empirical FOM (denoted ) for measurement of cone-beam artifact magnitude in a test phantom.

Approach: A previously proposed analytical FOM [, defined as the minimum angle between a point in the 3D image reconstruction and the x-ray source over the scan orbit] was analyzed for a variety of CBCT geometries.

View Article and Find Full Text PDF

Cone-beam computed tomography (CBCT) imaging is becoming increasingly important for a wide range of applications such as image-guided surgery, image-guided radiation therapy as well as diagnostic imaging such as breast and orthopaedic imaging. The potential benefits of non-circular source-detector trajectories was recognized in early work to improve the completeness of CBCT sampling and extend the field of view (FOV). Another important feature of interventional imaging is that prior knowledge of patient anatomy such as a preoperative CBCT or prior CT is commonly available.

View Article and Find Full Text PDF