HIV-1 transcription initiates at two positions, generating RNAs with either 1G or 3G 5' ends. The replication fates of these RNAs differ, with viral particles encapsidating almost exclusively 1G RNAs and 3G RNAs retained in cells where they are enriched on polysomes and among spliced viral RNAs. Here, we studied replication properties of virus promoter mutants that produced only one RNA 5' isoform or the other: separately, in combination, and during spreading infection.
View Article and Find Full Text PDFHIV-1 transcription initiates at two positions, generating RNAs with either 1G or 3G 5' ends. The replication fates of these RNAs di\er, with viral particles encapsidating almost exclusively 1G RNAs and 3G RNAs retained in cells where they are enriched on polysomes and among spliced viral RNAs. Here, we studied replication properties of virus promoter mutants that produced only one RNA 5' isoform or the other: separately, in combination, and during spreading infection.
View Article and Find Full Text PDFHIV-1 transcript function is controlled in part by twinned transcriptional start site usage, where 5' capped RNAs beginning with a single guanosine (1G) are preferentially packaged into progeny virions as genomic RNA (gRNA) whereas those beginning with three sequential guanosines (3G) are retained in cells as mRNAs. In 3G transcripts, one of the additional guanosines base pairs with a cytosine located within a conserved 5' polyA element, resulting in formation of an extended 5' polyA structure as opposed to the hairpin structure formed in 1G RNAs. To understand how this remodeling influences overall transcript function, we applied in vitro biophysical studies with in-cell genome packaging and competitive translation assays to native and 5' polyA mutant transcripts generated with promoters that differentially produce 1G or 3G RNAs.
View Article and Find Full Text PDFHIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5´ isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively, the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogeneous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs.
View Article and Find Full Text PDFHIV-1 uses heterogeneous transcription start sites (TSSs) to generate two RNA 5' isoforms that adopt radically different structures and perform distinct replication functions. Although these RNAs differ in length by only two bases, exclusively the shorter RNA is encapsidated while the longer RNA is excluded from virions and provides intracellular functions. The current study examined TSS usage and packaging selectivity for a broad range of retroviruses and found that heterogenous TSS usage was a conserved feature of all tested HIV-1 strains, but all other retroviruses examined displayed unique TSSs.
View Article and Find Full Text PDF