The availability of an animal model for obsessive-compulsive disorder (OCD) is necessary for the development of novel pharmacological treatments. To be useful, the model must be predictive of clinical performance, possess characteristic criteria and distinguish anti-OCD from antidepressant compounds. Due to the lack of OCD models useful for drug discovery, all compounds currently used for OCD were developed first as antidepressants.
View Article and Find Full Text PDFHP-236 (3-[4-[4-(6-Fluorobenzo[b]thien-3-yl)-1-piperazinyl]butyl]-2,5,5- trimethyl-4-thiazolidinone maleate; P-9236) (54) displayed a pharmacological profile indicative of potential atypical antipsychotic activity. A series of piperazinyl butyl thiazolidinones structurally related to this compound were prepared and evaluated in vitro for dopamine D2 and serotonin 5HT2 and 5HT1A receptor affinity. The compounds were examined in vivo in animal models of potential antipsychotic activity and screened in models predictive of extrapyramidal side effect (EPS) liability.
View Article and Find Full Text PDFExamination of HP 184, [N-n-propyl)-N-(3-fluoro-4-pyridinyl) -1H-3-methylindodel-1-amine hydrochloride], in a variety of tests for serotonergic activity revealed some unique properties of this compound. We report here that 100 microM HP 184 enhanced spontaneous release of [3H]serotonin (5-HT) from rat hippocampal slices. This release was independent of the uptake carrier.
View Article and Find Full Text PDFThe aim of the present paper is to report on the adrenergic and serotonergic effects of besipirdine (HP 749) in vivo and to discuss its potential use in the treatment of obsessive compulsive disorder. Besipirdine inhibited biogenic amine uptake in vitro. It prevented tetrabenazine-induced ptosis in mice and potentiated the 5-hydroxytryptophan-induced serotonin syndrome in rats.
View Article and Find Full Text PDF