Publications by authors named "A T Robertson"

The high compliance of the urinary bladder during filling is essential for its proper function, enabling it to accommodate significant volumetric increases with minimal rise in transmural pressure. This study aimed to elucidate the physical mechanisms underlying this phenomenon by analyzing the ex vivo filling process in rat from a fully voided state to complete distension, without preconditioning, using three complementary imaging modalities. High-resolution micro-CT at 10.

View Article and Find Full Text PDF

Sustained activation of the SIRT3-NLRP3 inflammasome has been associated with worse outcomes after ischemic stroke. The objective of this study was to examine the potential mechanism by which the SIRT3-NLRP3 inflammasome affects neural stem and progenitor cells (NSPCs) after transient middle cerebral artery occlusion (tMCAO) in rats. Following tMCAO, significantly elevated levels of NLRP3, ASC, cleaved caspase 1, IL-1β, and IL-18 were observed in the ischemic subventricular zone.

View Article and Find Full Text PDF

Success of phage therapies is limited by bacterial defenses against phages. While a large variety of anti-phage defense mechanisms has been characterized, how expression of these systems is distributed across individual cells and how their combined activities translate into protection from phages has not been studied. Using bacterial single-cell RNA sequencing, we profiled the transcriptomes of ~50,000 cells from cultures of a human pathobiont, , infected with a lytic bacteriophage.

View Article and Find Full Text PDF

Objective: The complex mix of factors, including hemodynamic forces and wall remodeling mechanisms, that drive intracranial aneurysm growth is unclear. This study focuses on the specific regions within aneurysm walls where growth occurs and their relationship to the prevalent hemodynamic conditions to reveal critical mechanisms leading to enlargement.

Methods: The authors examined hemodynamic models of 67 longitudinally followed aneurysms, identifying 88 growth regions.

View Article and Find Full Text PDF

Microplastic particles are ubiquitous in aquatic environments and are considered a major threat to the large range of heterotrophic organisms that involuntarily consume them. However, there is current uncertainty around the mechanisms underpinning microplastic uptake by aquatic consumers and the consequences for both the fate of the microplastics and the growth potential of consumer populations. We performed a feeding experiment, exposing a model freshwater ciliate, Tetrahymena pyriformis, to six different microplastic concentrations and measured microplastic uptake and population growth over the course of several generations.

View Article and Find Full Text PDF