Publications by authors named "A T Nurden"

Glanzmann thrombasthenia (GT) is the most common inherited platelet disorder (IPD) with mucocutaneous bleeding and a failure of platelets to aggregate when stimulated. The molecular cause is insufficient or defective αIIbβ3, an integrin encoded by the and genes. On activation αIIbβ3 undergoes conformational changes and binds fibrinogen (Fg) and other proteins to join platelets in the aggregate.

View Article and Find Full Text PDF

This report identifies a novel variant form of the inherited bleeding disorder Glanzmann thrombasthenia, exhibiting only mild bleeding in a physically active individual. The platelets cannot aggregate ex vivo with physiologic agonists of activation, although microfluidic analysis with whole blood displays moderate ex vivo platelet adhesion and aggregation consistent with mild bleeding. Immunocytometry shows reduced expression of αIIbβ3 on quiescent platelets that spontaneously bind/store fibrinogen, and activation-dependent antibodies (ligand-induced binding site-319.

View Article and Find Full Text PDF

Clot retraction is important for the prevention of bleeding, in the manifestations of thrombosis and for tissue repair. The molecular mechanisms behind clot formation are complex. Platelet involvement begins with adhesion at sites of vessel injury followed by platelet aggregation, thrombin generation and fibrin production.

View Article and Find Full Text PDF

Vascular homeostasis is impaired in various diseases thereby contributing to the progression of their underlying pathologies. The endothelial immediate early gene Apolipoprotein L domain-containing 1 (APOLD1) helps to regulate endothelial function. However, its precise role in endothelial cell biology remains unclear.

View Article and Find Full Text PDF