We present ab initio calculations of the resonant Auger spectrum of benzene. In the resonant process, Auger decay ensues following the excitation of a core-level electron to a virtual orbital. Hence, resonant Auger decay gives rise to higher-energy Auger electrons compared to nonresonant decay.
View Article and Find Full Text PDFThe article presents a clinical case of secondary cardiomyopathy in an HIV patient with plasmablastic lymphoma due to the combined pathology (HIV infection with ongoing antiretroviral therapy in combination with antitumor therapy), in which the use of multimodal imaging contributed to establishing the correct diagnosis and excluding the unjustified use of invasive methods for diagnosing ischemic heart disease.
View Article and Find Full Text PDFA novel molecular structure that bridges the fields of molecular optical cycling and molecular photoswitching is presented. It is based on a photoswitching molecule azobenzene functionalized with one and two CaO- groups, which can act as optical cycling centers (OCCs). This paper characterizes the electronic structure of the resulting model systems, focusing on three questions: (1) how the electronic states of the photoswitch are impacted by a functionalization with an OCC; (2) how the states of the OCC are impacted by the scaffold of the photoswitch; and (3) whether the OCC can serve as a spectroscopic probe of isomerization.
View Article and Find Full Text PDFTwo-dimensional materials with new physical phenomena are gaining popularity due to their unique properties. In recent years, a new family of layered compounds inspired by the minerals valleriite and tochilinite which are composed of alternating quasi-atomic sheets of transition metal chalcogenides (sulfides and selenides of Fe, Fe-Cu and other metals) and hydroxides of Mg, Al, Fe, Li, ., assembled electrostatic interaction, has arisen as a new synthetic platform for 2D materials.
View Article and Find Full Text PDFOne of the most important areas of application for equation-of-motion coupled-cluster (EOM-CC) theory is the prediction, simulation, and analysis of various types of electronic spectra. In this work, the EOM-CC method for ionized states, known as EOM-IP-CC, is applied to the closely lying and coupled pair of states of the ozone cation─ and ─using highly accurate treatments including up to the full single, double, triple, and quadruple excitations (EOM-IP-CCSDTQ). Combined with a venerable and powerful method for calculating vibronic spectra from the Hamiltonian produced by EOM-IP-CC calculations, the simulations yield a spectrum that is in good agreement with the photoelectron spectrum of ozone.
View Article and Find Full Text PDF