Publications by authors named "A T Kotchevar"

Solubilizing agents are routinely added when investigating the biotransformation of lipophilic substrates using hepatic microsomes. For highly lipophilic compounds, the concentration of solvent or surfactant necessary for dissolution can be detrimental to enzyme activity. This study evaluates the effect of 12 surfactants on microsomal metabolism and the ability of the same surfactants to improve the aqueous solubility of the pentabrominated diphenyl ether BDE-100, a lipophilic environmental contaminant previously found to be recalcitrant to in vitro metabolism.

View Article and Find Full Text PDF

The chemical stability of a novel cysteine chloromethyl ketone derivative (HI-131) with anti-leukemic activity has been investigated in a microemulsion formulation. HI-131 degrades to two major products, most likely by undergoing oxidation and further reaction with another HI-131 molecule to form higher molecular weight oligomers of the original compound. The degradation kinetics of HI-131 have been studied as a function of pH, buffer composition, ionic strength, and temperature.

View Article and Find Full Text PDF

The reaction of in situ generated Cp(2)V(OTf)(2) (Cp = cyclopentadienyl; OTf = O(3)SCF(3)) with excess 1,10-phenanthroline and 2,2'-bipyridine yields the d(1) vanadocene coordination compounds [Cp(2)V(phen)][OTf](2) (1) and [Cp(2)V(bpy)][OTf](2) (2), respectively. The compounds have been characterized by UV-vis and EPR spectroscopy and by cyclic voltammetry. The complexes have relatively low vanadium(IV)-vanadium(III) reduction potentials (-0.

View Article and Find Full Text PDF

The ability of bis(cyclopentadienyl)-vanadium(IV) (acetylacetonate) (1) to initiate oxygen-dependent lipid peroxidation in zwitterionic liposomal membranes was examined in detail. A comparison of the rates of the lipid peroxidation reaction demonstrated that the electron-donating capacity of the substituted acetylacetonate ligand significantly influences the rate of reaction. An increase in the rate of lipid peroxidation correlated to a decrease in the V(IV)/V(V) redox potential.

View Article and Find Full Text PDF

Carbon-13 NMR spectroscopy and phosphorus-31 NMR spectroscopy have been used to study the reaction of several alkylcobalamins with 2-mercaptoethanol. At alkaline pH, when the thiol is deprotonated, the alkyl-transfer reactions involve a nucleophilic attack of the thiolate anion on the Co-methylene carbon of the cobalamins, yielding alkyl thioethers and cob(II)alamin. In these nucleophilic displacement reactions cob(I)alamin is presumably formed as an intermediate.

View Article and Find Full Text PDF