Two-dimensional (2D) chromium(III) sulfide has recently attracted increased attention from researchers due to its interesting electronic and magnetic properties and has great potential for application in spintronics and optoelectronics to create sensitive photodetectors. However, the synthesis of 2D CrS crystals is still a challenging task. At present, the mainly used method is vapor deposition, which is a poorly scalable, time-consuming, and expensive process.
View Article and Find Full Text PDFTwo-dimensional materials with new physical phenomena are gaining popularity due to their unique properties. In recent years, a new family of layered compounds inspired by the minerals valleriite and tochilinite which are composed of alternating quasi-atomic sheets of transition metal chalcogenides (sulfides and selenides of Fe, Fe-Cu and other metals) and hydroxides of Mg, Al, Fe, Li, ., assembled electrostatic interaction, has arisen as a new synthetic platform for 2D materials.
View Article and Find Full Text PDFWe recently synthesized prospective new materials composed of alternating quasi-atomic sheets of brucite-type hydroxide (Mg, Fe)(OH) and CuFeS sulfide (valleriites). Herein, their thermal behavior important for many potential applications has been studied in inert (Ar) and oxidative (20% O) atmospheres using thermogravimetry (TG) and differential scanning calorimetry (DSC) analyses and characterization with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and energy-dispersive X-ray (EDX). In the Ar media, the processes are determined by the dehydroxylation of the hydroxide layers forming MgO, with the temperature of the major endothermic maximum of the mass loss at 413 °C.
View Article and Find Full Text PDFA new method for extractive-catalytic fractionation of aspen wood to produce microcrystalline (MCC), microfibrillated (MFC), nanofibrilllated (NFC) celluloses, xylan, and ethanollignin is suggested in order to utilize all of the main components of wood biomass. Xylan is obtained with a yield of 10.2 wt.
View Article and Find Full Text PDFCellulose sulfates are important biologically active substances with a wide range of useful properties. The development of new methods for the production of cellulose sulfates is an urgent task. In this work, we investigated ion-exchange resins as catalysts for the sulfation of cellulose with sulfamic acid.
View Article and Find Full Text PDF