Publications by authors named "A T Campbell"

Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.

Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.

View Article and Find Full Text PDF

Soil bacteria were isolated from the Tar Creek Superfund site in the presence of cadmium. Eight of these strains belong to the genus , whereas one strain belongs to the genus . Here, we report drafts of their genome sequences and highlight cadmium-resistance genes required in an exceptionally contaminated environment.

View Article and Find Full Text PDF

Antibiotics have revolutionized medicine, saving countless lives since the introduction of penicillin. However, antimicrobial resistance has challenged their efficacy, prompting ongoing efforts to develop new antibiotics. This study explores the antimicrobial effects of a bile acid derivative, BA-3/4-Butyl.

View Article and Find Full Text PDF

Some patients with metastatic castration-resistant prostate cancer (mCRPC) possess germline or acquired defects in the DNA damage repair (DDR) genes BRCA1 and BRCA2. Tumors with BRCA mutations exhibit sensitivity to poly-ADP ribose polymerase inhibitors (PARPi) such as olaparib and rucaparib. As a result, molecular diagnostic testing to identify patients with BRCA mutations eligible for the PARPi therapy has become an integral component of managing patients with mCRPC.

View Article and Find Full Text PDF

The epidermal barrier defends the body against dehydration and harmful substances. The commensal microbiota is essential for proper differentiation and repair of the epidermal barrier, an effect mediated by the aryl hydrocarbon receptor (AHR). However, the microbial mechanisms of AHR activation in skin are less understood.

View Article and Find Full Text PDF