Publications by authors named "A Szczupak"

Study Objective: To identify knowledge gaps in business education among obstetrics and gynecology fellows METHODS: An online anonymous survey was distributed to obstetrics and gynecology subspecialty fellows, including pediatric and adolescent gynecology, minimally invasive gynecologic surgery, and reproductive endocrinology and infertility fellows.

Results: Of the 483 fellows who received the questionnaire, 159 completed the surveys, resulting in a response rate of 32.9%.

View Article and Find Full Text PDF

Biogas is a sustainable, renewable energy source generated from organic waste degradation during anaerobic digestion (AD). AD is applied for treating different types of wastewater, mostly containing high organic load. However, AD practice is still limited due to the low quality of the produced biogas.

View Article and Find Full Text PDF

The limitation of surface-display systems in biofuel cells to a single redox enzyme is a major drawback of hybrid biofuel cells, resulting in a low copy-number of enzymes per yeast cell and a limitation in displaying enzymatic cascades. Here we present the electrosome, a novel surface-display system based on the specific interaction between the cellulosomal scaffoldin protein and a cascade of redox enzymes that allows multiple electron-release by fuel oxidation. The electrosome is composed of two compartments: (i) a hybrid anode, which consists of dockerin-containing enzymes attached specifically to cohesin sites in the scaffoldin to assemble an ethanol oxidation cascade, and (ii) a hybrid cathode, which consists of a dockerin-containing oxygen-reducing enzyme attached in multiple copies to the cohesin-bearing scaffoldin.

View Article and Find Full Text PDF

Biofuel cells are electrochemical devices which convert chemical energy to electricity using biochemical pathways and redox enzymes. In enzymatic fuel cells purified redox enzymes catalyze the reactions in the anode and cathode compartments whereas in microbial fuel cells (MFCs) the entire metabolism of the microorganisms is exploited. Here, a hybrid biofuel cell concept is presented, which is based on yeast surface display (YSD) of redox enzymes to catalyze the different cell reactions.

View Article and Find Full Text PDF

Implantable biofuel cells have been suggested as sustainable micropower sources operating in living organisms, but such bioelectronic systems are still exotic and very challenging to design. Very few examples of abiotic and enzyme-based biofuel cells operating in animals in vivo have been reported. Implantation of biocatalytic electrodes and extraction of electrical power from small living creatures is even more difficult and has not been achieved to date.

View Article and Find Full Text PDF