In this study, we introduce a novel advancement in the field of theoretical exploration. Specifically, we investigate the transfer and trapping of electronic excitations within a two-component disordered system confined to a finite volume. The implications of our research extend to energy transfer phenomena on spherical nanoparticles, characterized by randomly distributed donors and acceptors on their surface.
View Article and Find Full Text PDFThis work describes the optimization of the one-pot synthesis of fine nanostructures based on nanogold (Au NPs) and silica (SiO). The obtained nanomaterials were characterized by Transmission Electron Microscopy (TEM and by the method of spectroscopes such as UV-Vis Spectroscopy and Fourier Transform Infrared Spectroscopy (FT-IR). In addition, the measurement of the zeta potential and size of the obtained particles helped present a full characterization of Au@SiO nanostructures.
View Article and Find Full Text PDFThis work describes the synthesis and characterization of new core-shell material designed for Förster resonance energy transfer (FRET) studies. Synthesis, structural and optical properties of core-shell nanostructures with a large number of two kinds of fluorophores bound to the shell are presented. As fluorophores, strongly fluorescent rhodamine 101 and rhodamine 110 chloride were selected.
View Article and Find Full Text PDFIn this work we study the luminescence properties of europium-doped titanium dioxide and tellurium oxide thin films enhanced by gold plasmonic nanostructures. We propose a new type of plasmon structure with an ultrathin dielectric film between plasmonic platform and luminescent material. Plasmonic platforms were manufactured through thermal annealing of the gold thin film.
View Article and Find Full Text PDFGlass-ceramics with the composition BO-BiO-SrF were synthesized by the conventional melt-quenching technique and subsequent crystallization of the parental glasses. The temperature at which the ceramization was carried out was selected based on differential scanning calorimetry (DSC) analysis. The structure of the studied materials and the formation of SrF nanocrystals were confirmed by the Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques.
View Article and Find Full Text PDF