Publications by authors named "A Swaan"

To assess the safety and technical feasibility of needle-based forward-looking confocal laser endomicroscopy in prostate tissue. For this feasibility study, 2 patients with a suspicion of prostate cancer underwent transperineal needle-based confocal laser endomicroscopy during ultrasound-guided transperineal template mapping biopsies. After intravenous administration of fluorescein, needle-based confocal laser endomicroscopy imaging was performed with a forward-looking probe (outer diameter 0.

View Article and Find Full Text PDF

Introduction: Halo gravity traction (HGT) is increasingly used pre-operatively in the treatment of children with complex spinal deformities. However, the design of the current halo crowns is not optimal for that purpose. To prevent pin loosening and to avoid visual scars, fixation to the temporal area would be preferable.

View Article and Find Full Text PDF

The increase histopathological evaluation of prostatectomy specimens rises the workload on pathologists. Automated histopathology systems, preferably directly on unstained specimens, would accelerate the pathology workflow. In this study, we investigate the potential of quantitative analysis of optical coherence tomography (OCT) to separate benign from malignant prostate tissue automatically.

View Article and Find Full Text PDF

Objective: To demonstrate the safety and feasibility of clinical in vivo needle-based optical coherence tomography (OCT) imaging of the prostate.

Materials And Methods: Two patients with prostate cancer underwent each two percutaneous in vivo needle-based OCT measurements before transperineal template mapping biopsy. The OCT probe was introduced via a needle and positioned under ultrasound guidance.

View Article and Find Full Text PDF

Optical coherence tomography (OCT), enables high-resolution 3D imaging of the morphology of light scattering tissues. From the OCT signal, parameters can be extracted and related to tissue structures. One of the quantitative parameters is the attenuation coefficient; the rate at which the intensity of detected light decays in depth.

View Article and Find Full Text PDF