Publications by authors named "A Suntinger"

The individual adjustment of the AV intervals is a prerequisite for the hemodynamic advantages of dual-chamber pacing. The methods for the optimization of the AV-Delay (AVD) applied so far are time intensive. A simple and fast method is the approximate adjustment of the AVD with the surface-ECG.

View Article and Find Full Text PDF

The main disadvantages of bipolar pacing leads have traditionally been related to their relative thickness and stiffness compared to unipolar leads. In a new "drawn filled tube" plus "coated wire" technology, each conductor strand is composed of MP35N tubing filled with silver core and coated with a thin ETFE polymer insulation material. This and parallel winding of single anode and cathode conductors into a single bifilar coil resulted in a bipolar lead (ThinLine, Intermedics) with a body diameter and flexibility similar to unipolar leads.

View Article and Find Full Text PDF

Using telemetry, right atrial electrogram (RA), and marker channel of atrial sense events (MA) in combination with the left atrial electrogram (LA), recorded by a filtered bipolar esophageal lead, interatrial conduction during submaximal exercise and at rest was examined in 46 DDD pacemaker patients. The RA-LA and MA-LA conduction times measured in the presence of atrial sensing (VDD) as well as the conduction time SA-LA from atrial stimulus (SA) to LA, determined during atrial pacing (DDD) were found to be individual constants independent of exercise induced sympathetic influences. Thus, having determined an optimal mechanical interval (LA-LV)mech/opt from left atrium to ventricle by other methods, the optimal AV delay for DDD as well as for VDD operation can be calculated by the sum of the appropriate interatrial conduction time (SA-LA, respectively MA-LA) and the (LA-LV)mech/opt interval.

View Article and Find Full Text PDF