Water quality assessment is paramount for environmental monitoring and resource management, particularly in regions experiencing rapid urbanization and industrialization. This study introduces Artificial Neural Networks (ANN) and its hybrid machine learning models, namely ANN-RF (Random Forest), ANN-SVM (Support Vector Machine), ANN-RSS (Random Subspace), ANN-M5P (M5 Pruned), and ANN-AR (Additive Regression) for water quality assessment in the rapidly urbanizing and industrializing Bagh River Basin, India. The Relief algorithm was employed to select the most influential water quality input parameters, including Nitrate (NO), Magnesium (Mg), Sulphate (SO), Calcium (Ca), and Potassium (K).
View Article and Find Full Text PDFTimely crop water stress detection can help precision irrigation management and minimize yield loss. A two-year study was conducted on non-invasive winter wheat water stress monitoring using state-of-the-art computer vision and thermal-RGB imagery inputs. Field treatment plots were irrigated using two irrigation systems (flood and sprinkler) at four rates (100, 75, 50, and 25% of crop evapotranspiration [ET]).
View Article and Find Full Text PDF