Background: Diabetic sensorimotor polyneuropathy (DSPN) is often asymptomatic and remains undiagnosed. The ability of clinical and anthropometric variables to identify individuals likely to have DSPN might be limited. Here, we aimed to integrate protein biomarkers for reliably predicting present DSPN.
View Article and Find Full Text PDFObjective: Endogenous carbonyl stress leads to the formation of advanced glycation end products (AGEs). AGEs represent a potential target to prevent or treat diabetic sensorimotor polyneuropathy (DSPN). The current study aimed to characterize cutaneous carbonyl stress, oxidative stress, immune cells, and endothelial cell damage in early type 2 diabetes compared with normal glucose tolerance (NGT) using novel cutaneous biomarkers.
View Article and Find Full Text PDFAdvances in the spatiotemporal resolution and field-of-view of neuroimaging tools are driving mesoscale studies for translational neuroscience. On October 10, 2023, the Center for Mesoscale Mapping (CMM) at the Massachusetts General Hospital (MGH) Athinoula A. Martinos Center for Biomedical Imaging and the Massachusetts Institute of Technology (MIT) Health Sciences Technology based Neuroimaging Training Program (NTP) hosted a symposium exploring the state-of-the-art in this rapidly growing area of research.
View Article and Find Full Text PDFThe second FASEB conference on Nuclear Bodies: Hubs of Genome Activity was held June 2-7, 2024, at Niagara Falls, NY. The central theme was how these protein and RNA-protein complexes that are situated in the nucleus outside the genome support and regulate gene expression. Topics included their relevance to disease, especially cancer, their molecular dynamics, and their phase separation transition properties.
View Article and Find Full Text PDFBiomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells.
View Article and Find Full Text PDF