Publications by authors named "A Sterzi"

Thermophotovoltaic devices have promising applications for energy conversion. However, current conversion efficiency of chemical energy to light is very low, limited by the competing process of heat dissipation released as black body radiation. From a fundamental point of view, the direct conversion of chemical energy into light without this detour is possible.

View Article and Find Full Text PDF

Time-effective, unsupervised clustering techniques are exploited to discriminate nanometric metal disks patterned on a dielectric substrate. The discrimination relies on cluster analysis applied to time-resolved optical traces obtained from thermo-acoustic microscopy based on asynchronous optical sampling. The analysis aims to recognize similarities among nanopatterned disks and to cluster them accordingly.

View Article and Find Full Text PDF

Although of pivotal importance in heterogeneous hydrogenation reactions, the amount of hydrogen on catalysts during reactions is seldom known. We demonstrate the use of neutron imaging to follow and quantify hydrogen containing species in Cu/ZnO catalysts operando during methanol synthesis. The steady-state measurements reveal that the amount of hydrogen containing intermediates is related to the reaction yields of CO and methanol, as expected from simple considerations of the likely reaction mechanism.

View Article and Find Full Text PDF

Here, we report on a novel narrowband High Harmonic Generation (HHG) light source designed for ultrafast photoelectron spectroscopy (PES) on solids. Notably, at 16.9 eV photon energy, the harmonics bandwidth equals 19 meV.

View Article and Find Full Text PDF

Many puzzling properties of high-critical temperature () superconducting (HTSC) copper oxides have deep roots in the nature of the antinodal quasiparticles, the elementary excitations with wave vector parallel to the Cu-O bonds. These electronic states are most affected by the onset of antiferromagnetic correlations and charge instabilities, and they host the maximum of the anisotropic superconducting gap and pseudogap. We use time-resolved extreme-ultraviolet photoemission with proper photon energy (18 eV) and time resolution (50 fs) to disclose the ultrafast dynamics of the antinodal states in a prototypical HTSC cuprate.

View Article and Find Full Text PDF