New organic nanostructures were synthesized by introducing 2-methylbenzimidazole (MBI) molecules from a melt, gas phase, or alcoholic solution into nanosized voids of borate porous glasses (PG), nanotubes of chrysotile asbestos (ChA), and mesoporous silica (MS). The incorporation of MBI into borate glasses with different pore sizes is accompanied by the appearance of several phases formed by nanocrystallites which have a MBI crystal structure, but somewhat differ in lattice parameters. The size of some crystallites significantly exceeds the size of nanopores, which indicates the presence of long-scale correlations of the crystal structure.
View Article and Find Full Text PDFSingle crystals of 2-methylbenzimidazolium perchlorate were prepared for the first time with a slow evaporation method from an aqueous solution of a mixture of 2-methylbenzimidazole (MBI) crystals and perchloric acid HClO. The crystal structure was determined by single crystal X-ray diffraction (XRD) and confirmed by XRD of powder. Angle-resolved polarized Raman and Fourier-transform infrared (FTIR) absorption spectra of crystals consist of lines caused by molecular vibrations in MBI molecule and ClO tetrahedron in the region = 200-3500 cm and lattice vibrations in the region of 0-200 cm.
View Article and Find Full Text PDFJ Phys Chem A
October 2020
Absorption and magnetic circular dichroism (MCD) spectra have been measured and theoretically simulated for a series of palladium octaethylporphyrins substituted at the positions with phenyl groups ( = 0-4). Analysis of the spectra included the perimeter model and time-dependent density functional theory (TDDFT) calculations. With the increasing number of phenyl substituents, the molecule is transformed from a positive hard (ΔHOMO > ΔLUMO) to a soft (ΔHOMO ≈ ΔLUMO) chromophore.
View Article and Find Full Text PDFThe steady state fluorescence anisotropy of carbon dot solutions of different viscosities η and its variation with temperature T has been investigated. The dependence of the anisotropy on T/η is shown to be described by the Perrin equation, which implies that Brownian rotational motion of carbon dots in solution is a basic mechanism of fluorescence depolarization. Peculiarities of the Perrin plot testify that the luminous entity ("fluorophore") responsible for carbon dot fluorescence displays noticeable segmental motions, which are independent of the overall rotational diffusion of the dots.
View Article and Find Full Text PDFMikrochim Acta
February 2019
A method is described for sensitive and selective detection of iodine by using a paper strip modified with silver triangular nanoplates (AgTNPs). It is based on the extraction of iodine from a solution into a flow of air via dynamic gas extraction and transferring it through a reactive paper modified with AgTNPs. The interaction of AgTNPs with iodine results in a color change from blue to white.
View Article and Find Full Text PDF