Publications by authors named "A Spyratou"

Fluoride substitution in LiBH is studied by investigation of LiBH-LiBF mixtures (9 : 1 and 3 : 1). Decomposition was followed by in situ synchrotron radiation X-ray diffraction (in situ SR-PXD), thermogravimetric analysis and differential scanning calorimetry with gas analysis (TGA/DSC-MS) and in situ infrared spectroscopy (in situ FTIR). Upon heating, fluoride substituted LiBH forms (LiBHF) and decomposition occurs, releasing diborane and solid decomposition products.

View Article and Find Full Text PDF

Borohydrides have attained high interest in the past few years due to their high volumetric and gravimetric hydrogen content. Synthesis of di/trimetallic borohydride is a way to alter the thermodynamics of hydrogen release from borohydrides. Previously reported preparations of M(BH4)2 involved chloride containing species such as SrCl2.

View Article and Find Full Text PDF

Despite the recurrence of fingermark dating issues and the research conducted on fingermark composition and aging, no dating methodology has yet been developed and validated. In order to further evaluate the possibility of developing dating methodologies based on the fingermark composition, this research proposed an in-depth study of the aging of target lipid parameters found in fingermark residue and exposed to different influence factors. The selected analytical technique was gas chromatography coupled with mass spectrometry (GC/MS).

View Article and Find Full Text PDF

Inorganic compounds with BH4(-) ions are the subject of many recent investigations in the context of potential hydrogen storage materials. In this work, Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectra of a series of reference and research compounds (including deuterated samples) are collected and made available to the research community.

View Article and Find Full Text PDF

Hydrogen-fluorine exchange in the NaBH4-NaBF4 system is investigated using a range of experimental methods combined with DFT calculations and a possible mechanism for the reactions is proposed. Fluorine substitution is observed using in situ synchrotron radiation powder X-ray diffraction (SR-PXD) as a new Rock salt type compound with idealized composition NaBF2H2 in the temperature range T = 200 to 215 °C. Combined use of solid-state (19)F MAS NMR, FT-IR and DFT calculations supports the formation of a BF2H2(-) complex ion, reproducing the observation of a (19)F chemical shift at -144.

View Article and Find Full Text PDF