Publications by authors named "A Spitkovsky"

The energy partition in high Mach number collisionless shock waves is central to a wide range of high-energy astrophysical environments. We present a new theoretical model for electron heating that accounts for the energy exchange between electrons and ions at the shock. The fundamental mechanism relies on the difference in inertia between electrons and ions, resulting in differential scattering of the particles off a decelerating magnetically dominated microturbulence across the shock transition.

View Article and Find Full Text PDF

Since pulsars were discovered as emitters of bright coherent radio emission more than half a century ago, the cause of the emission has remained a mystery. In this Letter we demonstrate that coherent radiation can be directly generated in nonstationary pair plasma discharges which are responsible for filling the pulsar magnetosphere with plasma. By means of large-scale two-dimensional kinetic plasma simulations, we show that if pair creation is nonuniform across magnetic field lines, the screening of electric field by freshly produced pair plasma is accompanied by the emission of waves which are electromagnetic in nature.

View Article and Find Full Text PDF

We study the thermalization, injection, and acceleration of ions with different mass/charge ratios, A/Z, in nonrelativistic collisionless shocks via hybrid (kinetic ions-fluid electrons) simulations. In general, ions thermalize to a postshock temperature proportional to A. When diffusive shock acceleration is efficient, ions develop a nonthermal tail whose extent scales with Z and whose normalization is enhanced as (A/Z)^{2} so that incompletely ionized heavy ions are preferentially accelerated.

View Article and Find Full Text PDF

A study of the transition from collisional to collisionless plasma flows has been carried out at the National Ignition Facility using high Mach number (M>4) counterstreaming plasmas. In these experiments, CD-CD and CD-CH planar foils separated by 6-10 mm are irradiated with laser energies of 250 kJ per foil, generating ∼1000  km/s plasma flows. Varying the foil separation distance scales the ion density and average bulk velocity and, therefore, the ion-ion Coulomb mean free path, at the interaction region at the midplane.

View Article and Find Full Text PDF

We study diffusive shock acceleration (DSA) of protons and electrons at nonrelativistic, high Mach number, quasiparallel, collisionless shocks by means of self-consistent 1D particle-in-cell simulations. For the first time, both species are found to develop power-law distributions with the universal spectral index -4 in momentum space, in agreement with the prediction of DSA. We find that scattering of both protons and electrons is mediated by right-handed circularly polarized waves excited by the current of energetic protons via nonresonant hybrid (Bell) instability.

View Article and Find Full Text PDF