Publications by authors named "A Spielfiedel"

The accurate highly correlated ab initio calculations for ten low lying covalent Σ+2 states of CaH molecule, and one ionic CaH state, are performed using large active space and extended basis set, with special attention to the long-range (6-20 Å) region where a number of avoided crossings between ionic and covalent states occur. These states are further transformed to a diabatic representation using a numerical diabatization scheme based on the minimization of derivative coupling. This results in a smooth diabatic Hamiltonian which can be easily fit to an analytic form.

View Article and Find Full Text PDF

We compute a new potential energy surface (PES) for the study of the inelastic collisions between N2H(+) and H2 molecules. A preliminary study of the reactivity of N2H(+) with H2 shows that neglecting reactive channels in collisional excitation studies is certainly valid at low temperatures. The four dimensional (4D) N2H(+)-H2 PES is obtained from electronic structure calculations using the coupled cluster with single, double, and perturbative triple excitation level of theory.

View Article and Find Full Text PDF

Thermal rate constants for chemical reactions using the corrections of zero curvature tunneling (ZCT) and of small curvature tunneling (SCT) methods are reported. The general procedure is implemented and used with high-quality ab initio computations and semiclassical reaction probabilities along the minimum energy path (MEP). The approach is based on a vibrational adiabatic reaction path and is applied to the H + Si(CH3)4 → H2 + Si(CH3)3CH2 reaction and its isotopically substituted variants.

View Article and Find Full Text PDF

Rotational excitation of the CN(X (2)Sigma(+)) molecule with He is investigated. We present a new two-dimensional potential energy surface (PES) for the He-CN system, calculated at an internuclear CN distance frozen at its experimental equilibrium distance. This PES was obtained using an open-shell, coupled-cluster method including all single and double excitations, as well as the perturbative contributions of connected triple excitations [RCCSD(T)].

View Article and Find Full Text PDF

The SO(2) molecule is detected in a large variety of astronomical objects, notably molecular clouds and star-forming regions. An accurate modeling of the observations needs a very good knowledge of the collisional excitation rates with H(2) because of competition between collisional and radiative processes that excite and quench the different rotational levels of SO(2). We report here a five-dimensional, rigid-body, interaction potential for SO(2)-H(2).

View Article and Find Full Text PDF