Publications by authors named "A Spiacci"

A wealth of evidence associates disruptions of the parent-infant relationship (e.g. childhood parental loss or parental neglect) with the later appearance of panic disorder.

View Article and Find Full Text PDF

Background: Stimulation of serotonergic neurons within the dorsal raphe dorsomedial subnucleus facilitates inhibitory avoidance acquisition in the elevated T-maze. It has been hypothesized that such anxiogenic effect is due to serotonin release in the basolateral nucleus of the amygdala, where facilitation of serotonin 2C receptor-mediated neurotransmission increases anxiety. Besides the dorsal raphe dorsomedial subnucleus, the dorsal raphe caudal subnucleus is recruited by anxiogenic stimulus/situations.

View Article and Find Full Text PDF

Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG.

View Article and Find Full Text PDF

A wealth of evidence indicates that the lateral wings subnucleus of the dorsal raphe nucleus (lwDR) is implicated in the processing of panic-associated stimuli. Escape expression in the elevated T-maze, considered a panic-related defensive behavior, markedly and selectively recruits non-serotonergic cells within this DR subregion and in the dorsal periaqueductal gray (dPAG), another key panic-associated area. However, whether anti-panic drugs may interfere with this pattern of neuronal activation is still unknown.

View Article and Find Full Text PDF

Exposure of rats to an environment with low O levels evokes a panic-like escape behavior and recruits the dorsal periaqueductal gray (dPAG), which is considered to be a key region in the pathophysiology of panic disorder. The neurochemical basis of this response is, however, currently unknown. We here investigated the role played by nitric oxide (NO) within the dPAG in mediation of the escape reaction induced by hypoxia exposure.

View Article and Find Full Text PDF