To investigate the relationship between red blood cell Na+/H+ exchange (EXC) and genetic factors in hypertension, we studied the maximal rate of the antiporter (mmol/liter cell x hr; flux units = FU) in three strains of genetically hypertensive rats. Salt-resistant Dahl rats (DR) were normotensive under low (0.02%) and high (8%) NaCl diets, while salt-sensitive Dahl rats (DS) became markedly hypertensive after four weeks on the high-NaCl diet.
View Article and Find Full Text PDFThe present study was designed to examine the kinetics of Na(+)-H+ exchange in red blood cells of normotensive and hypertensive subjects and its relation to the previously reported abnormalities in Na(+)-Li+ exchange. The Na(+)-H+ antiporter activation kinetics were studied by varying cell pH and measuring net Na+ influx (mmol/l cell x hr = units) driven by an outward H+ gradient. The Na(+)-Li+ exchange was determined at pH 7.
View Article and Find Full Text PDFWe have investigated the kinetic properties of the human red blood cell Na+/H+ exchanger to provide a tool to study the role of genetic, hormonal and environmental factors in its expression as well as its functional properties in several clinical conditions. The present study reports its stoichiometry and the kinetic effects of internal H+ (Hi) and external Na+ (Nao) in red blood cells of normal subjects. Red blood cells with different cell Na+ (Nai) and pH (pHi) were prepared by nystatin and DIDS treatment of acid-loaded cells.
View Article and Find Full Text PDFWe have investigated the effect of a purified preparation of Charybdotoxin (CTX) on the Ca-activated K+ (Ca-K) channel of human red cells (RBC). Cytosolic Ca2+ was increased either by ATP depletion or by the Ca ionophore A23187 and incubation in Na+ media containing CaCl2. The Ca-K efflux activated by metabolic depletion was partially (77%) inhibited from 15.
View Article and Find Full Text PDF