Stress-strain constitutive relations in solids with an internal angular degree of freedom can be modeled using Cosserat (also called micropolar) elasticity. In this paper, we explore Cosserat materials that include chiral active components and hence odd elasticity. We calculate static elastic properties and show that the static response to rotational stresses leads to strains that depend on both Cosserat and odd elasticity.
View Article and Find Full Text PDFThe elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge.
View Article and Find Full Text PDFWe report that equidistant 1D arrays of thin-film lithium niobate nano-waveguides generically support topological edge states. Unlike conventional coupled-waveguide topological systems, the topological properties of these arrays are dictated by the interplay between intra- and inter-modal couplings of two families of guided modes with different parities. Exploiting two modes within the same waveguide to design a topological invariant allows us to decrease the system size by a factor of two and substantially simplify the structure.
View Article and Find Full Text PDFTopological states enable robust transport within disorder-rich media through integer invariants inextricably tied to the transmission of light, sound, or electrons. However, the challenge remains to exploit topological protection in a length-scalable platform such as optical fiber. We demonstrate, through both modeling and experiment, optical fiber that hosts topological supermodes across multiple light-guiding cores.
View Article and Find Full Text PDF