Publications by authors named "A Smyrnakis"

We describe an instrument configuration based on the Orbitrap Exploris 480 mass spectrometer that has been coupled to an Omnitrap platform. The Omnitrap possesses three distinct ion-activation regions that can be used to perform resonant-based collision-induced dissociation, several forms of electron-associated fragmentation, and ultraviolet photodissociation. Each section can also be combined with infrared multiphoton dissociation.

View Article and Find Full Text PDF

Comprehensive glycan sequencing remains an elusive goal due to the structural diversity and complexity of glycans. Present strategies employing collision-induced dissociation (CID) and higher energy collisional dissociation (HCD)-based multi-stage tandem mass spectrometry (MS) or MS/MS combined with sequential exoglycosidase digestions are inherently low-throughput and difficult to automate. Compared to CID and HCD, electron transfer dissociation (ETD) and electron capture dissociation (ECD) each generate more cross-ring cleavages informative about linkage positions, but electronic excitation dissociation (EED) exceeds the information content of all other methods and is also applicable to analysis of singly charged precursors.

View Article and Find Full Text PDF

MS SPIDOC is a novel sample delivery system designed for single (isolated) particle imaging at X-ray Free-Electron Lasers that is adaptable towards most large-scale facility beamlines. Biological samples can range from small proteins to MDa particles. Following nano-electrospray ionization, ionic samples can be m/z-filtered and structurally separated before being oriented at the interaction zone.

View Article and Find Full Text PDF

Multidimensional multiple-stage tandem processing of ions is demonstrated successfully in a novel segmented linear ion trap. The enhanced performance is enabled by incorporating the entire range of ion activation methods into a single platform in a highly dynamic fashion. The ion activation network comprises external injection of reagent ions, radical neutral species, photons, electrons, and collisions with neutrals.

View Article and Find Full Text PDF

Hierarchical micro-nanostructured surfaces are key components of 'smart' multifunctional materials, used to control wetting, adhesion, tactile, friction, optical, antifogging, antibacterial, and many more surface properties. Hierarchical surfaces comprise random or ordered structures ranked by their length scale spanning the range from a few nanometers to a few micrometers, with the larger microstructures typically embedding smaller nanostructures. Despite the importance of hierarchical surfaces, there have been few studies on their precise and controlled fabrication or their quantitative characterization, and they usually involve multiple and complex fabrication steps.

View Article and Find Full Text PDF