Publications by authors named "A Skrobala"

Background: The biological effects and clinical consequences of out-of-field radiation in peripheral organs can be difficult to determine, especially for low doses (0.1 Gy-1 Gy). In recent years, Monte Carlo (MC) methods have been proposed to more accurately predict nontarget doses.

View Article and Find Full Text PDF

Aim: In the treatment of prostate cancer with radiation therapy, the addition of a simultaneous integrated boost (SIB) to the dominant intraprostatic lesions (DIL) may improve local control. In this study, we aimed to determine the optimal radiation strategy in a phantom model of prostate cancer using volumetric modulated arc therapy for stereotactic body radiotherapy (SBRT-VMAT) with a SIB of 1-4 DILs.

Methods: We designed and printed a three-dimensional anthropomorphic phantom pelvis to simulate individual patient structures, including the prostate gland.

View Article and Find Full Text PDF

Background: Survival outcomes after primary radiotherapy for localized prostate cancer (PCa) are excellent, regardless of the specific treatment modality. For this reason, health-related quality of life (HRQOL) has come to play an ever more important role in treatment selection. Stereotactic body radiation therapy (SBRT) is increasingly used to treat patients with PCa.

View Article and Find Full Text PDF

In clinical radiotherapy, the most important aspects are the dose distribution in the target volume and healthy organs, including out-of-field doses in the body. Compared to photon beam radiation, dose distribution in electron beam radiotherapy has received much less attention, mainly due to the limited range of electrons in tissues. However, given the growing use of electron intraoperative radiotherapy and FLASH, further study is needed.

View Article and Find Full Text PDF

Hypo-fractionated stereotactic body radiation therapy (SBRT) is an effective treatment for prostate cancer (PCa). Although many studies have investigated the effects of SBRT on the prostate and adjacent organs, little is known about the effects further out-of-field. The aim of this study was to investigate, both in vitro and in a quasi-humanoid phantom, the biological effects (using a dose-scaling approach) of radiation in the out-of-field peripheral organs delivered by 6 MV volumetric modulated arc therapy (VMAT) SBRT in a prostate cancer model.

View Article and Find Full Text PDF