Publications by authors named "A Skeels"

Understanding how continental radiations are assembled across space and time is a major question in macroevolutionary biology. Here, we use a phylogenomic-scale phylogeny, a comprehensive morphological dataset, and environmental niche models to evaluate the relationship between trait and environment and assess the role of geography and niche conservatism in the continental radiation of Australian blindsnakes. The Australo-Papuan blindsnake genus, Anilios, comprises 47 described species of which 46 are endemic to and distributed across various biomes on continental Australia.

View Article and Find Full Text PDF

Coevolution between interacting species is thought to increase biodiversity, but evidence linking microevolutionary processes to macroevolutionary patterns is scarce. We leveraged two decades of behavioral research coupled with historical DNA analysis to reveal that coevolution with hosts underpins speciation in brood-parasitic bronze-cuckoos. At a macroevolutionary scale, we show that highly virulent brood-parasitic taxa have higher speciation rates and are more likely to speciate in sympatry than less-virulent and nonparasitic relatives.

View Article and Find Full Text PDF

Background: Biodiversity exists at different levels of organisation: e.g. genetic, individual, population, species, and community.

View Article and Find Full Text PDF

Climate's effect on global biodiversity is typically viewed through the lens of temperature, humidity and resulting ecosystem productivity. However, it is not known whether biodiversity depends solely on these climate conditions, or whether the size and fragmentation of these climates are also crucial. Here we shift the common perspective in global biodiversity studies, transitioning from geographic space to a climate-defined multidimensional space.

View Article and Find Full Text PDF

Mountains are among the most biodiverse regions on the planet, and how these landforms shape diversification through the interaction of biological traits and geo-climatic dynamics is integral to understanding global biodiversity. In this study, we investigate the dual roles of climate change and mountain uplift on the evolution of a hyper-diverse radiation, Liolaemus lizards, with a spatially explicit model of diversification using a reconstruction of uplift and paleotemperature in central and southern South America. The diversification model captures a hotspot for Liolaemus around 40°S in lineages with low-dispersal ability and narrow niche breadths.

View Article and Find Full Text PDF