Tissue engineering has emerged as a promising avenue for reconstructive urology, though only a limited number of tissue-engineered urethral constructs have advanced to clinical testing. Presently, there exists a dearth of agreement regarding the most promising constructs deserving of implementation in clinical practice. The objective of this review was to provide a comprehensive analysis of preclinical trials findings of a tissue-engineered urethra and to identify the most promising constructs for future translation into clinical practice.
View Article and Find Full Text PDFBackground: Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment.
View Article and Find Full Text PDFUnlabelled: Nasal septal perforation (NSP) is a complex problem in otorhinolaryngology, which leads to impaired nasal breathing and dryness in the nose. This reduces the patient's quality of life and leads to psychological discomfort. The treatment of nasal septum perforation is selected taking into account the clinical manifestations, perforation parameters and general condition of the patient.
View Article and Find Full Text PDFCurrent therapeutic approaches for Huntington's disease (HD) focus on symptomatic treatment. Therefore, the unavailability of efficient disease-modifying medicines is a significant challenge. Regarding the molecular etiology, targeting the mutant gene or advanced translational steps could be considered promising strategies.
View Article and Find Full Text PDF