Coronary artery pressure-drop and distensibility (compliance) are two major, seemingly unrelated, parameters in the cardiovascular clinical setting, which are indicative of coronary arteries patency and atherosclerosis severity. While pressure drop is related to flow, and therefore serves as a functional indicator of a stenosis severity, the arterial distensibility is indicative of the arterial stiffness, and hence the arterial wall composition. In the present study, we hypothesized that local pressure drops are dependent on the arterial distensibility, and hence can provide information on both indices.
View Article and Find Full Text PDFThis study presents an efficient, fast and accurate method for estimating the two-dimensional temperature distributions around multiple cryo-surgical probes. The identical probes are inserted into the same depth and are operated simultaneously and uniformly. The first step in this method involves numerical derivation of the temporal performance data of a single probe, embedded in a semi-infinite, tissue-like medium.
View Article and Find Full Text PDFThe assignments of basal metabolic rates (BMR), basal cardiac output (BCO), and basal blood perfusion rates (BBPR) were compared in nine multi-compartment, whole-body thermoregulation models. The data are presented at three levels of detail: total body, specific body regions, and regional body tissue layers. Differences in the assignment of these quantities among the compared models increased with the level of detail, in the above order.
View Article and Find Full Text PDFHigh accuracy differential pressure measurements are required in various biomedical and medical applications, such as in fluid-dynamic test systems, or in the cath-lab. Differential pressure measurements using fluid-filled catheters are relatively inexpensive, yet may be subjected to common mode pressure errors (CMP), which can significantly reduce the measurement accuracy. Recently, a novel correction method for high accuracy differential pressure measurements was presented, and was shown to effectively remove CMP distortions from measurements acquired in rigid tubes.
View Article and Find Full Text PDFThe advantage of measuring differential pressure using fluid-filled catheters is that the system is relatively inexpensive, but the readings are not accurate and affected by the common mode pressure (CMP) distortion. High accuracy differential pressure measurements are required in various biomedical applications, such as in fluid-dynamic test rigs, or in the cath-lab, from cardiac valves efficacy to functional assessment of arterial stenoses. We have designed and built a unique system in which the pressure difference was measured along the fluid flow inside a rigid circular tube using a fluid-filled double-lumen catheter.
View Article and Find Full Text PDF