Publications by authors named "A Shirdel"

We used site-specific mutagenesis by targeting E179 and F190 on the structure of photoprotein Mnemiopsin 2 (Mn2) from Mnemiopsis leidyi. The tertiary structure of E179S and F190L mutants was made by the MODELLER program. Far-ultraviolet circular dichroism data showed that the overall secondary structural content of photoprotein is not changed upon mutation, however the helicity and stabilizing interactions in helical structure decreases in mutants as compared with the wild-type (WT) photoprotein.

View Article and Find Full Text PDF

Mnemiopsin 1 (Mn1) and Mnemiopsin 2 (Mn2) are photoproteins found in Mnemiopsis leidyi. We have tried to answer the question of whether the structural features of photoproteins can explain the observed activity data. According to the activity measurements data, they have the same characteristic wavelength.

View Article and Find Full Text PDF

Chondroitinase ABC I (cABC I) from Proteus vulgaris is an important enzyme in medicinal biotechnology due to its ability to help axon regeneration after spinal cord injury. Its practical application involves solving several problems at the molecular and cellular levels. Structurally, most residues at the C-terminal domain of cABC I are arranged as organized strands, and only a small fraction of residues have helical conformation.

View Article and Find Full Text PDF

Regarding the existence of similar helices on the structure of different proteins, recently, novel variants of Chondroitinase ABC I (cABC I) have been constructed, where a representative helix between two structural motifs in Chondroitinase ABC I from Proteus vulgaris has been replaced by similar versions of helices found in other proteins. The previous study has revealed that the structural features and the activity of double mutants M886A/G887E (inspired by the 30 S ribosomal protein S1 from Geminocystis herdmanii) and M889I/Q891K (inspired by the chondroitin lyase from Proteus mirabilis) is comparable with that of wild-type (WT) cABC I. Here, the kinetic parameters of the enzyme activity for the WT and double mutants were determined.

View Article and Find Full Text PDF

We designed two mutants of photoprotein Mnemiopsin 2 (Mn2) including M52I and V144I, where the mutations were applied in the EF-hand loops I and III. Far-UV CD measurements demonstrated that the stability of the helices in the wild-type (WT) protein is greater compared with the mutants. Heat-induced denaturation experiments in the apo-form of photoproteins showed that WT Mn2 has higher value of the enthalpy change for the unfolding process, indicating that it has more stabilizing interaction compared with mutants.

View Article and Find Full Text PDF