Publications by authors named "A Shirazi-Adl"

This study assessed the effect of a small-torque generating passive back-support exoskeleton during a low demanding occupational task, namely a repetitive lifting/lowering of an empty crate between the knee and shoulder heights. A comprehensive set of outcomes was considered, ranging from the measured trunk muscle activation and trunk movement to the estimated muscle group forces/coordination, spine loading and spine stability, using a dynamic subject-specific EMG-assisted musculoskeletal model. The exoskeleton decreased back muscle activation and corresponding muscle forces in the lowering phase and reduced spinal loading at larger trunk flexion angles (decreased peak compression and shear forces by ∼ 15%).

View Article and Find Full Text PDF
Article Synopsis
  • * The study uses a validated model to analyze how changes in knee flexion angles (KFA) impact forces on the posterior cruciate ligament (PCL) and other muscles during seated MVIC flexion exercises.
  • * Findings show that as knee flexion increases, PCL and tibiofemoral contact forces rise significantly, indicating that these factors are key to understanding knee biomechanics and improving rehabilitation strategies.
View Article and Find Full Text PDF

Current clinical examination of low back pain (LBP) patients primarily relies on static clinical examinations, which rarely represent the dynamic postures patients adopt during daily activities. To gain an overview on the dynamic kinematics-kinetics changes over a day, the lumbar back kinematics of asymptomatic individuals and LBP patients were measured over 24 h, and the passively resisted bending and torsional moments were estimated. 208 asymptomatic subjects (115 females) and 116 LBP patients (71 females) were analysed.

View Article and Find Full Text PDF

Spine biomechanics is at a transformation with the advent and integration of machine learning and computer vision technologies. These novel techniques facilitate the estimation of 3D body shapes, anthropometrics, and kinematics from as simple as a single-camera image, making them more accessible and practical for a diverse range of applications. This study introduces a framework that merges these methodologies with traditional musculoskeletal modeling, enabling comprehensive analysis of spinal biomechanics during complex activities from a single camera.

View Article and Find Full Text PDF