Publications by authors named "A Shinozaki"

Methods that facilitate molecular identification and imaging are required to evaluate drug penetration into tissues. Time-of-flight secondary ion mass spectrometry (ToF-SIMS), which has high spatial resolution and allows 3D distribution imaging of organic materials, is suitable for this purpose. However, the complexity of ToF-SIMS data, which includes nonlinear factors, makes interpretation challenging.

View Article and Find Full Text PDF

The phase changes and reactivity of 1-pentadecene (CH) were investigated using Raman spectroscopy under high-pressure and high-temperature conditions using diamond anvil cells. At room temperature, the phase changes from liquid phase to solid phase I, and solid phase I to solid phase II were observed at 0.3 GPa and 4.

View Article and Find Full Text PDF

Purpose: The purpose of this work is to validate a simple and versatile integrated variable flip angle (VFA) method for mapping B in hyperpolarized MRI, which can be used to correct signal variations due to coil inhomogeneity.

Theory And Methods: Simulations were run to assess performance of the VFA B mapping method compared to the currently used constant flip angle (CFA) approach. Simulation results were used to inform the design of VFA sequences, validated in four volunteers for hyperpolarized xenon-129 imaging of the lungs and another four volunteers for hyperpolarized carbon-13 imaging of the human brain.

View Article and Find Full Text PDF

As hyperpolarized (HP) carbon-13 (C) metabolic imaging is clinically translated, there is a need for easy-to-implement, fast, and robust imaging techniques. However, achieving high temporal resolution without decreasing spatial and/or spectral resolution, whilst maintaining the usability of the imaging sequence is challenging. Therefore, this study looked to accelerate HP C MRI by combining a well-established and robust sequence called two-dimensional Chemical Shift Imaging (2D CSI) with prospective under sampling and SENSitivity Encoding (SENSE) reconstruction.

View Article and Find Full Text PDF

Hyperpolarized carbon 13 MRI (C MRI) is a novel imaging approach that can noninvasively probe tissue metabolism in both normal and pathologic tissues. The process of hyperpolarization increases the signal acquired by several orders of magnitude, allowing injected C-labeled molecules and their downstream metabolites to be imaged in vivo, thus providing real-time information on kinetics. To date, the most important reaction studied with hyperpolarized C MRI is exchange of the hyperpolarized C signal from injected [1-C]pyruvate with the resident tissue lactate pool.

View Article and Find Full Text PDF