Genetic modification in plants helps us to understand molecular mechanisms underlying on plant fitness and to improve profitable crops. However, in transgenic plants, the value of gene expression often varies among plant populations of distinct lines and among generations of identical individuals. This variation is caused by several reasons, such as differences in the chromosome position, repeated sequences, and copy number of the inserted transgene.
View Article and Find Full Text PDFPlant Biotechnol (Tokyo)
June 2018
Plant high-affinity K (HAK) transporters are divided into four major clusters. Cluster I transporters, in particular, are thought to have high-affinity for K. Of the 27 genes in rice, eight HAK transporters belong to cluster I.
View Article and Find Full Text PDFHKT transporters are Na(+)-permeable membrane proteins, which mediate Na(+) and K(+) homeostasis in K(+)-depleted and saline environments in plants. Class II HKT transporters, a distinct subgroup found predominantly in monocots, are known to mediate Na(+)-K(+) co-transport in principle. Here we report features of ion transport functions of No-OsHKT2;2/1, a class II transporter identified in a salt tolerant landrace of indica rice, Nona Bokra.
View Article and Find Full Text PDFLigation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments.
View Article and Find Full Text PDFThe proteasome pathway regulates many aspects of biological processes in plants, such as plant hormone signaling, light responses, the circadian clock and regulation of cell division. Key cell-cycle regulatory proteins including B-type cyclins, Cdc6, cyclin-dependent kinase inhibitors and E2Fc undergo proteasome-dependent degradation. We used the proteasome inhibitor MG132 to show that proteolysis of Arabidopsis RETINOBLASTOMA-RELATED 1 (AtRBR1) and three E2Fs is mediated by the proteasome pathway during sucrose starvation in Arabidopsis suspension MM2d cells.
View Article and Find Full Text PDF