Purpose: Fraction of exhaled nitric oxide (FeNO) and soluble advanced glycation end-product receptor (sRAGE) are proposed as biomarkers of asthma, therefore we sought to assess their use in asthmatic children of Jordan.
Patients And Methods: We conducted a case-control study at The University of Jordan Hospital. A total of 141 asthmatic children followed by respiratory pediatricians and 118 healthy children aged 4-18 years were recruited.
Advanced glycation end products (AGEs) contribute significantly to vascular dysfunction (VD) in diabetes. Decreased nitric oxide (NO) is a hallmark in VD. In endothelial cells, NO is produced by endothelial NO synthase (eNOS) from L-arginine.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is becoming a major contributor to cardiovascular disease. One of the early signs of T2DM associated cardiovascular events is the development of vascular dysfunction. This dysfunction has been implicated in increasing the morbidity and mortality of T2DM patients.
View Article and Find Full Text PDFObjectives: To assess serum 25-hydroxycholecalciferol (25-OH vitamin D) levels in Jordanian children with bronchial asthma, and to examine correlations between 25-OH vitamin D levels and asthma severity and control.
Methods: A cross-sectional study was conducted at the Paediatric Chest Clinic, Al-Karak Governmental Hospital, Southern Jordan, between May 2015 and February 2016. Serum 25-hydroxyvitamin D level was determined in children aged 1-14 years diagnosed with bronchial asthma (6-14 years) or recurrent wheezing episodes (<6 years).
Biochim Biophys Acta Mol Cell Res
September 2019
Emerging evidence suggests that arginase contributes to endothelial dysfunction in diabetes. Intracellular signaling pathways, which interplay between arginase and eNOS enzyme activity leading to the development of endothelial dysfunction in hyperglycemia are not fully understood. Here, we analyzed the possible involvement of hyperglycemia (HG) induced arginase expression in eNOS protein regulation and activity and also the impact of arginase inhibition on eNOS activity.
View Article and Find Full Text PDF