The temporal contrast of a regeneratively amplified, sub-picosecond pulse is enhanced by employing a low-gain optical parametric amplification stage self-pumped by the second harmonic of the pulse. Through careful characterization of the two related nonlinear processes and optimization of the non-collinear geometry, a robust high-contrast idler pulse has been generated, with excellent spatial quality in both the near and far field. The overall energy conversion efficiency exceeds 14%, with 33% intensity conversion efficiency.
View Article and Find Full Text PDFWe have investigated the temporal intensity contrast characteristics from a broad range of mode-locked short-pulse oscillators used for seeding high-power terawatt and petawatt-class laser systems. Saturable absorber (SESAM), Kerr lens (KLM), nonlinear polarization evolution (NPE) in optical fibers and synchronously pumped optical parametric oscillator (OPO) mode-locked sources have been measured using a third-order autocorrelator with up to 10 dynamic range. We restricted the temporal characterization to features <30 ps about the laser pulse that reflect fundamental mode-locking processes.
View Article and Find Full Text PDFWe present a comprehensive model for predicting the full performance of a second harmonic generation-optical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration.
View Article and Find Full Text PDFIn this work 3-chloro-2-chlorocarbonylbenzo[b]thiophene (1) was prepared from cinnamic acid and then converted into the acid hydrazide 2. The azomethines 3a-e were prepared from the corresponding aryl aldehydes and the acid hydrazide 2. Treatment of compound 2 with formic acid gave the N-formyl acid hydrazide 4, which upon refluxing with phosphorous pentoxide or phosphorous pentasulphide in xylene yielded the corresponding 2- (3-chloro-1-benzothien-2-yl)-1,3,4-oxadiazole (5) and 2-(3-chloro-1-benzo-thien-2-yl)-1,3,4- thiadiazole (6).
View Article and Find Full Text PDFNew heterocyclic derivatives of cyclopropane dicarboxylic acid comprising thiadiazole and 1,2,4-triazole moieties are reported. Reaction of 1,1-cyclopropane dicarboxylic acid (1) with thiosemicarbazide and phosphorous oxychloride resulted in 1,1-bis (2-amino-1,3,4-thiadiazol-5- yl)cyclopropane (2). Cyclopropane dicarboxylic acid thiosemicarbazide (6) was converted into 1,1-bis(3-thio-4H-1,2,4-triazol-5-yl) cyclo- propane (7) by ring closure in an alkaline medium.
View Article and Find Full Text PDF