Publications by authors named "A Shallop"

(15)N NMR chemical shift changes in the presence of Mg(H(2)O)(6)(2+), Zn(2+), Cd(2+), and Co(NH(3))(6)(3+) were used to probe the effect of flanking bases on metal binding sites in three different RNA motifs. We found that: for GC pairs, the presence of a flanking purine creates a site for the soft metals Zn(2+) and Cd(2+) only; a GG.UU motif selectively binds only Co(NH(3))(6)(3+), while a UG.

View Article and Find Full Text PDF

Adenylation domains are critical enzymes that dictate the identity of the amino acid building blocks to be incorporated during nonribosomal peptide (NRP) biosynthesis. NRPs display a wide range of biological activities and are some of the most important drugs currently used in clinics. Traditionally, activity of adenylation domains has been measured by radioactive ATP-[32P]pyrophosphate (PP(i)) exchange assays.

View Article and Find Full Text PDF

We have used the synthesis and 15N NMR study of separate loop A and loop B domains of the hairpin ribozyme to demonstrate that multiple 15N atoms can be incorporated into an RNA strand and be unambiguously distinguished through a combination of direct and indirect tagging by 13C atoms. Absence of 15N chemical shift changes shows that the G8N1 in loop A does not become deprotonated up to pH 8, and that the G21N7 of loop B does not bind to Mg2+.

View Article and Find Full Text PDF

Guanosine labeled with 15N at N1, amino, and N7 and 13C at either C2 or C8 was oxidized by Rose Bengal photosensitization (singlet oxygen) in buffered aqueous solution. At pH > 7, spiroiminodihydantoin was the major product, while at pH < 7, guanidinohydantoin (Gh) was the principal product. 15N and 13C NMR studies confirmed that Gh was formed as a mixture of slowly equilibrating diastereomers.

View Article and Find Full Text PDF