Angew Chem Int Ed Engl
October 2019
Vibrational strong coupling (VSC) has recently emerged as a completely new tool for influencing chemical reactivity. It harnesses electromagnetic vacuum fluctuations through the creation of hybrid states of light and matter, called polaritonic states, in an optical cavity resonant to a molecular absorption band. Here, we investigate the effect of vibrational strong coupling of water on the enzymatic activity of pepsin, where a water molecule is directly involved in the enzyme's chemical mechanism.
View Article and Find Full Text PDFMany chemical methods have been developed to favor a particular product in transformations of compounds that have two or more reactive sites. We explored a different approach to site selectivity using vibrational strong coupling (VSC) between a reactant and the vacuum field of a microfluidic optical cavity. Specifically, we studied the reactivity of a compound bearing two possible silyl bond cleavage sites-Si-C and Si-O, respectively-as a function of VSC of three distinct vibrational modes in the dark.
View Article and Find Full Text PDFFrom the high vibrational dipolar strength offered by molecular liquids, we demonstrate that a molecular vibration can be ultrastrongly coupled to multiple IR cavity modes, with Rabi splittings reaching 24% of the vibration frequencies. As a proof of the ultrastrong coupling regime, our experimental data unambiguously reveal the contributions to the polaritonic dynamics coming from the antiresonant terms in the interaction energy and from the dipolar self-energy of the molecular vibrations themselves. In particular, we measure the opening of a genuine vibrational polaritonic band gap of ca.
View Article and Find Full Text PDFIn quantum electrodynamics, matter can be hybridized to confined optical fields by a process known as light-matter strong coupling. This gives rise to new hybrid light-matter states and energy levels in the coupled material, leading to modified physical and chemical properties. Here, we report for the first time the strong coupling of vibrational modes of proteins with the vacuum field of a Fabry-Perot mid-infrared cavity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2016
The ground-state deprotection of a simple alkynylsilane is studied under vibrational strong coupling to the zero-point fluctuations, or vacuum electromagnetic field, of a resonant IR microfluidic cavity. The reaction rate decreased by a factor of up to 5.5 when the Si-C vibrational stretching modes of the reactant were strongly coupled.
View Article and Find Full Text PDF