Introduction: Obstructive sleep apnea (OSA) and severe obesity share a common pathophysiological phenomenon, systemic and tissue hypoxia. Hypoxaemia modifies microRNA expression, particularly, extracellular vesicles microRNAs which are involved in the progression of cardiovascular diseases, metabolic syndrome and cancer. We aim to evaluate extracellular vesicle miRNAs among patients with severe obesity with and without OSA and the effect of OSA and severe obesity treatment: continuous positive airway pressure (CPAP) and bariatric surgery.
View Article and Find Full Text PDFOne of the techniques most widely used in ethanol analysis in forensic laboratories is undoubtedly the headspace gas chromatography with flame-ionization detection (HS-GC-FID) since the determination of this substance is carried out directly, without the need for additional purification procedures, which leads to increased productivity. This is a very important factor due to the high number of alcohol analysis requested to these laboratories. The presence of other volatile substances can cause a problem given the fact that they can be interferents in ethanol analysis by HS-GC-FID, which can have legal consequences related with driving under the influence of alcohol.
View Article and Find Full Text PDFA simple and sensitive procedure, using n-propanol as internal standard (IS), was developed and validated for the qualitative and quantitative analysis of a group of 11 volatile organic substances with different physicochemical properties (1-butanol, 2-propanol, acetaldehyde, ethyl acetate, acetone, acetonitrile, chloroform, diethyl ether, methanol, toluene and p-xylene) in whole blood, urine and vitreous humor. Samples were prepared by dilution with an aqueous solution of internal standard followed by Headspace Gas Chromatography with a Flame-ionization Detector (HS GC-FID) analysis. Chromatographic separation was performed using two capillary columns with different polarities (DB-ALC2: 30m×0.
View Article and Find Full Text PDFThe application of the design of experiments to optimize method development in the field of forensic toxicology using the urinary morphine 3-glucuronide acid hydrolysis as an example is described. Morphine and its trideuterated analogue (used as an internal standard) were extracted from urine samples by liquid-liquid extraction (ToxiTubes A) and derivatized by silylation. Chromatographic analysis was done by gas chromatography-mass spectrometry in the selected ion monitoring mode.
View Article and Find Full Text PDF