Background: Multiple studies have demonstrated associations between the early-life gut microbiome and incidence of inflammatory and autoimmune disease in childhood. Although microbial colonization is necessary for proper immune education, it is not well understood at a mechanistic level how specific communities of bacteria promote immune maturation or drive immune dysfunction in infancy.
Objectives: In this study, we aimed to assess whether infant microbial communities with different overall structures differentially influence immune and gastrointestinal development in healthy mice.
Human milk (HM) components affect immune cell toll-like receptor 4 (TLR4) signaling. However, studies examining the immunomodulatory impacts of HM on TLR4 signaling in intestinal epithelial cells (IECs) are limited. This study utilized both a TLR4 reporter cell line and a Caco-2 IEC model to examine the effects of HM on lipopolysaccharide (LPS)-induced TLR4 activation and cytokine responses, respectively.
View Article and Find Full Text PDFHuman milk is universally recognized as the preferred food for infants during the first 6 mo of life because it provides not only essential and conditionally essential nutrients in necessary amounts but also other biologically active components that are instrumental in protecting, communicating important information to support, and promoting optimal development and growth in infants. Despite decades of research, however, the multifaceted impacts of human milk consumption on infant health are far from understood on a biological or physiological basis. Reasons for this lack of comprehensive knowledge of human milk functions are numerous, including the fact that milk components tend to be studied in isolation, although there is reason to believe that they interact.
View Article and Find Full Text PDF