Background: Resveratrol (RES) is a phytochemical bioactive compound with suggested therapeutic benefits.
Objective: The current work aimed to evaluate the anti-inflammatory effect of RES against palmitate (PA) induced lipotoxicity in raw 264.7 macrophages cell line.
The advent of smart cities has brought about a paradigm shift in urban management and citizen engagement. By leveraging technological advancements, cities are now able to collect and analyze extensive data to optimize service delivery, allocate resources efficiently, and enhance the overall well-being of residents. However, as cities become increasingly interconnected and data-dependent, concerns related to data privacy and security, as well as citizen participation and representation, have surfaced.
View Article and Find Full Text PDFObjective: Cadmium (Cd) and lead (Pb) are non-biodegradable heavy metals (HMs) that persistently contaminate ecosystems and accumulate in bones, where they exert harmful effects. This study aimed to investigate the protective effect of fucoxanthin (FX) against the chemical toxicity induced by Cd and Pb in human bone osteoblasts in vitro, using various biochemical and molecular assays.
Methods: The effect of metals and FX on osteoblasts viability was assayed by MTT, then the effect of Pb, Cd, and FX on the cells' mitochondrial parameters was studied via assays for ATP, mitochondrial membrane potential (MMP), mitochondrial complexes, and lactate production.
Plast Reconstr Surg Glob Open
December 2024
Background: Successful nipple-areolar complex (NAC) reconstruction greatly influences patient outcomes for transgender patients undergoing chest masculinization. Despite the recent rise in case volume, little is known on designing the ideal NAC that maintains its aesthetics in dynamic settings. This study aimed to examine the characteristics of male NACs and their dimensional variability to help develop guidelines on designing the neo-NAC.
View Article and Find Full Text PDFDespite the known therapeutic uses of dexamethasone (DEX), the specific mechanisms underlying its neurotoxic effects in neuronal cells, particularly in undifferentiated human neuroblastoma (SH-SY5Y) cells, remain inadequately understood. This study aims to elucidate these mechanisms, emphasizing bioenergetics, oxidative stress, and apoptosis, thereby providing novel insights into the cellular vulnerabilities induced by chronic DEX exposure. The findings revealed significant reductions in cell viability, altered membrane integrity with LDH leakage, decreased intracellular ATP production, and the electron transport chain complexes I and III activity inhibition.
View Article and Find Full Text PDF