Publications by authors named "A Seitel"

Ultrasound (US) has gained popularity as a guidance modality for percutaneous needle insertions because it is widely available and non-ionizing. However, coordinating scanning and needle insertion still requires significant experience. Current assistance solutions utilize optical or electromagnetic tracking (EMT) technology directly integrated into the US device or probe.

View Article and Find Full Text PDF

Spectral imaging has the potential to become a key technique in interventional medicine as it unveils much richer optical information compared to conventional RBG (red, green, and blue)-based imaging. Thus allowing for high-resolution functional tissue analysis in real time. Its higher information density particularly shows promise for the development of powerful perfusion monitoring methods for clinical use.

View Article and Find Full Text PDF

Intelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current research focuses on converting the high-dimensional, not human-interpretable spectral data into the underlying functional information, specifically the blood oxygenation.

View Article and Find Full Text PDF

Photoacoustic imaging potentially allows for the real-time visualization of functional human tissue parameters such as oxygenation but is subject to a challenging underlying quantification problem. While in silico studies have revealed the great potential of deep learning (DL) methodology in solving this problem, the inherent lack of an efficient gold standard method for model training and validation remains a grand challenge. This work investigates whether DL can be leveraged to accurately and efficiently simulate photon propagation in biological tissue, enabling photoacoustic image synthesis.

View Article and Find Full Text PDF

Laparoscopic surgery has evolved as a key technique for cancer diagnosis and therapy. While characterization of the tissue perfusion is crucial in various procedures, such as partial nephrectomy, doing so by means of visual inspection remains highly challenging. We developed a laparoscopic real-time multispectral imaging system featuring a compact and lightweight multispectral camera and the possibility to complement the conventional surgical view of the patient with functional information at a video rate of 25 Hz.

View Article and Find Full Text PDF