In this work we demonstrate a two-pixel solid-state photoluminescent device able to emit white light covering the entire visible spectrum from 380 nm up to 800 nm. The device is based on a combination of porous Si, hydrothermally grown ZnO and carbon quantum dots, in a two-pixel formation, with porous Si and ZnO acting independently while the carbon quantum dots are deposited on top of the entire device. All processing is done using standard Si processing techniques.
View Article and Find Full Text PDFCarbon dot-based fluorescent nanocomposite compounds were obtained following microwave assisted thermal treatment of an aqueous mixture consisting of citric acid and urea. Thin film deposition of nanocomposites on SiO2 (100) substrates is followed by annealing, in order to render the films dissolution-resistant and processable. Optical lithography and O2 plasma etching are utilized to pattern the deposited films in the desired shapes and dimensions and a solid-state relative humidity sensor is fabricated on the SiO2 substrate.
View Article and Find Full Text PDFThis paper describes the fabrication and the characterization of an original example of a miniaturized resistive-type humidity sensor, printed on flexible substrate in a large-scale manner. The fabrication process involves laser ablation for the design of interdigitated electrodes on PET (Poly-Ethylene Terephthalate) substrate and a screen-printing process for the deposition of the sensitive material, which is based on TiO₂ nanoparticles. The laser ablation process was carefully optimized to obtain micro-scale and well-resolved electrodes on PET substrate.
View Article and Find Full Text PDF