Premise Of The Study: Global change in temperature and soil nitrogen availability could affect plant community composition, potentially giving an advantage to invasive species compared to native species. We addressed how high temperatures affected CO assimilation parameters for invasive Phalaris arundinacea and a sedge, Carex stricta, it displaces, in natural and controlled environments.
Methods: Photosynthetic parameters were measured in a wetland in Indiana, USA during the abnormally warm year of 2012.
Increasing fructokinase (FRK) activity in cotton (Gossypium hirsutum L.) plants may reduce fructose inhibition of sucrose synthase (Sus) and lead to improved fibre yield and quality. Cotton was transformed with a tomato (Solanum lycopersicum L.
View Article and Find Full Text PDFPhalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C.
View Article and Find Full Text PDFThe regulation of gene expression is a key factor in plant acclimation to stress, and it is thought that manipulation of the expression of critical stress-responsive genes should ultimately provide increased protection against abiotic stress. The aim of this study was to test the hypothesis that the ectopic expression of the AtSAP5 (AT3G12630) gene in transgenic cotton (Gossypium hirsutum, cv. Coker 312) will improve tolerance to drought and heat stress by up-regulating the expression of endogenous stress-responsive genes.
View Article and Find Full Text PDFPremise Of The Study: Most invasive plants grow faster and produce more biomass than the species that they displace, but physiological mechanisms leading to invasive success are poorly understood. To foster novel control approaches, our goal was to determine whether the grass Phalaris arundinacea possessed superior physiological strategies that contributed to its success over native sedges.
Methods: Data for spring, summer, and autumn diel gas-exchange, leaf morphology, and nitrogen content for plants of P.