Nitrate (NO ) deficiency decreases root water uptake and root hydraulic conductance. This adaptive response is correlated with reduced abundance and activity of plasma membrane intrinsic protein (PIP) aquaporins. We therefore screened changes in the root architecture of a complete set of Arabidopsis pip loss-of-function mutants grown under NO deficiency to systematically approach the impact of PIPs under these conditions.
View Article and Find Full Text PDFThe small-molecule glucosyltransferase loss-of-function mutant ugt76b1 exhibits both SID2- or NPR1-dependent and independent facets of enhanced plant immunity, whereupon FMO1 is required for the SID2 and NPR1 independence. The small-molecule glucosyltransferase UGT76B1 inactivates salicylic acid (SA), isoleucic acid (ILA), and N-hydroxypipecolic acid (NHP). ugt76b1 loss-of-function plants manifest an enhanced defense status.
View Article and Find Full Text PDFAgonist-induced phosphorylation is a crucial step in the activation/deactivation cycle of G protein-coupled receptors (GPCRs), but direct determination of individual phosphorylation events has remained a major challenge. We have recently developed a bead-based immunoassay for the quantitative assessment of agonist-induced GPCR phosphorylation that can be performed entirely in 96-well plates, thus eliminating the need for western blot analysis. In the present study, we adapted this assay to three novel phosphosite-specific antibodies directed against the neurokinin 1 (NK1) receptor, namely pS338/pT339-NK1, pT344/pS347-NK1, and pT356/pT357-NK1.
View Article and Find Full Text PDFPlants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0.
View Article and Find Full Text PDFThe use of beneficial microbes to mitigate drought stress tolerance of plants is of great potential albeit little understood. We show here that a root endophytic desert bacterium, Pseudomonas argentinensis strain SA190, enhances drought stress tolerance in Arabidopsis. Transcriptome and genetic analysis demonstrate that SA190-induced root morphogenesis and gene expression is mediated via the plant abscisic acid (ABA) pathway.
View Article and Find Full Text PDF