Publications by authors named "A Sayede"

The phenomenon of solid dissolution into a solution constitutes a fundamental aspect in both natural and industrial contexts. Nevertheless, its intricate nature at the microscale poses a significant challenge for precise quantitative characterization at a foundational level. In this work, the influence across three specific cleavage planes, namely (100), (111), and (110) on the dissolution kinetics of fluorite in aqueous environments was examined from both experimental and theoretical standpoints.

View Article and Find Full Text PDF

The effects of biaxial tensile and compressive strain on the structural, electronic, and photocatalytic properties of tetragonal [001] (SnO)/(TiO) superlattices have been theoretically explored using density functional theory (DFT) calculations. Various stacking periodicities between SnO layers and TiO layers, including ( = ), (, 1), and (1, ) were studied in the context of water splitting for hydrogen production. The results reveal that the (1, ) stacking periodicity exhibit the highest bulk modulus, Poisson's ratio, and Debye temperature values.

View Article and Find Full Text PDF

This study addresses the challenge of accurately identifying stereoisomers in cheminformatics, which originates from our objective to apply machine learning to predict the association constant between cyclodextrin and a guest. Identifying stereoisomers is indeed crucial for machine learning applications. Current tools offer various molecular descriptors, including their textual representation as Isomeric SMILES that can distinguish stereoisomers.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a serious global public health threat. The evolving strains of SARS-CoV-2 have reduced the effectiveness of vaccines. Therefore, antiviral drugs against SARS-CoV-2 are urgently needed.

View Article and Find Full Text PDF

Polymorphic phases of copper pyrovanadate (α- and β-CuVO) were synthesized by solid state reaction and the mechanisms governing the phase transitions have been highlighted by the ThermoGravimetric Analysis (TGA) and the Differential Scanning Calorimetry (DSC). The thermal evolution of the lattice parameters was determined by high temperature X-ray Diffraction revealing negative thermal expansion coefficients. The thermogravimetric analysis coupled with differential scanning calorimetry was also used to determine the optimal conditions to obtain a dense target in order to produce thin films by the Pulsed Laser Deposition (PLD) technique.

View Article and Find Full Text PDF